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Abstract. We present semi-empirical interatomic potentials for the rare-earth metals (Sc, Y,
La and lanthanides) and their compounds within the framework of the hybridized nearly-free-
electron–tight-binding-bond (NFE–TBB) model. Potential parameters are adjusted to reproduce
the experimental data for interatomic spacings and elastic constants. The derived potentials are
found to provide good agreement with the experimental data for the face-centred cubic, hexagonal
close-packed and double-hexagonal close-packed elemental rare-earth metals. We have also made
a comparison between the bond-angle-dependent tight-binding-d-bond model and the bond-angle-
independent model. Within the present model, we have found that the bondings in the rare-earth
metals depend on the bond angles, and the dependence is weaker compared with those in the
transition metals.

1. Introduction

For a few decades, bondings in simple metals have been successfully treated theoretically [1].
Harrison [2] applied one of the most simplified theories (Thomas–Fermi theory) for the simple
metals and extended it to the bondings in lanthanides and heavy actinides, and succeeded in
predicting the trends in some properties of these metals. His model treats the spd electrons
for all the f-shell metals as the sp electrons for the simple metals, and all f bands are localized
except for light actinides. In this treatment, the interatomic interaction can be written as a
single-term pairwise screened Coulomb potential—the same as the one for the simple metals
given by Harrison and Wills [3].

On the basis of the success of this model, Singh and Singh [4] applied the hybridized
nearly-free-electron–tight-binding-bond (NFE–TBB) model of the two-body interaction to
some of the fcc rare-earth metals in the form originally developed by Wills and Harrison [2,5]
and attempted to obtain a more realistic description of the bondings by treating the effect of
the d bands and f bands explicitly. Using this model, they calculated the elastic constants and
performed a comparison with the experimental data which showed reasonable accord.

Nevertheless, f bands for the lanthanides and heavy actinides can be seen as localized
to a large extent [6] and it is questionable to treat the effect of the f bands explicitly at this
level of the approximation. Besides, although the model given by Singh and Singh [4] has
acquired some accuracy, no optimization of the tight-binding parameters is done and the accord
with the experimental data seems to be achieved through including many-nearest-neighbour
interactions. Requiring many nearest neighbours leads to the following problems, at least: (1) it
is not always physical to include further-neighbour interactions instead of the angle dependence
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of the bondings [8], and (2) it is hard to use them as interatomic potential functions in molecular
dynamics simulations.

Motivated by these facts, we have attempted to apply a simplified but realistic enough
and physically appropriate interatomic potential function for rare-earth metals and their
compounds. We use the formula derived using the combined NFE and bond-angle-dependent
TBB model. This model was originally designed for the transition metals and their compounds,
but it can be more widely used where the d or f band plays a similar role to those of the transition
metals, as we have already tested for aluminium [9] and light-actinide metals [10]. The purpose
of the present study is:

(1) to show how we can extend this model to the rare-earth metals with the simplification of
neglecting the f-band contribution and with the emphasis on the bond-angle dependence
of the d bonding by introducing angle dependence and by including only first-nearest-
neighbour interactions; and

(2) to present an efficient model for, e.g., long-timescale dynamical properties, and large-scale
atomistic motions, which are important for the understanding of the mechanical properties
through molecular dynamics simulation using such a potential function.

In the present study, these aims are achieved through the inclusion of the long-ranged interaction
in pairwise potential form and the inclusion of the short-ranged but strongly structure-
dependent interaction in non-pairwise many-atom form. The latter only involves a number of
atoms of the order of the coordination number.

We describe the model and the procedure that we have used for the estimations of the
elastic constants to be compared with the experimental data in the next section. The results
for the derived elastic constants and the comparison with the available experimental data are
presented in section 3. Finally, we conclude in section 4.

2. Computational method

The hybridized NFE–TBB model of the interatomic potential is as follows [11]:

8total = 8NFE +8TB,rep +8TB,bond. (1)

The first term treats the sp-electron gas in simple metal. The remaining terms are for the TBB
part of the potential for the d electrons in the present study, for we have assumed f bands to be
fully localized. This is a good approximation except for the low-temperature phase of Ce [6].
Thus, the interatomic potential model that we have used for the rare-earth metals is the same
as the one for the transition metals.

We adopt the following NFE interaction formulation given by Pettifor and Ward [12]:

8NFE = 2N2
s

rij

3∑
n=1

An cos(knr + αn) exp(κnrij ). (2)

Ns is the number of sp valence electrons. The Heine–Abarenkov model potential is used to
calculate the parametersAn, αn, kn andκn [13] and all of them are determined byrc andD.

The following is the repulsive interaction used:

8TB,rep= Nd

7

h2
ij d

10
ij

r8
ij

. (3)

Nd is the number of d valence electrons and is determined as the number of total valence
electrons minusNs. dij is the equilibrium interatomic separation. We use the interatomic
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matrix element form obtained by Wills and Harrison [5], and then all matrix elements and their
averageh are determined by a single parameter,rd.

The bond energy expression is

8TB,bond= 2
∑
αβ

Hjβ,iα2iα,jβ . (4)

Hjβ,iα is the tight-binding Hamiltonian and2iα,jβ is the bond order. The bond order is
calculated from the following simplified expression [15]:

2α
i,j = χ̂(Nd)

/{
1 +

1

2

∑
k 6=i,j

[(
hα(rik)

hα(rij )

)2

gα(θjik) +

(
hα(rjk)

hα(rij )

)2

gα(θijk)

]}1/2

. (5)

The suffixα denotesσ -, π - andδ-orbitals, andhα corresponds to the interatomic element
linking the α-orbital at each atom.̂χ(Nd) is the reduced susceptibility.g(θ) is an angle-
dependent embedding function for each type of the bond. The form forg as a function of bond
angleθ and the procedure for the calculation of the coefficients are given in the reference by
Pettifor [14] and the resulting embedding function curves for d are presented in the literature
by Nishitaniet al [15].

We assumed that the TBB interactions are negligible except for the first-nearest neighbour
and the total interactions include the contributions up to fourth-nearest neighbours as is done
for the fcc structure of Al [9].

The hybridized NFE–TBB potential used in the present study is determined by three
adjustable parameters,rc,D andrd, if we fix Ns orNd. We set these parameters such that the
interatomic spacingd and the bulk modulusB are reproduced by the least-squares fitting. We
set several starting values for these parameters for each atom around the final values reported in
the literature [4] and chose one which gives the best accord with experimental elastic constant
data. The total number of valence electrons is 3 for all metals except Yb, for which it is 2. The
value ofNd is 1 except forγ -Ce andβ-Yb, for which it is 0.5 and 0.1 respectively. The value
Nd = 1 for these two metals gives very poor results forC ′.

If we fix all variablesr andθ in equation (5) to the interatomic separations and the bond
angles of the non-strained crystallographic structure respectively, the potential functionφ

results in a pairwise interaction. We used this pairwise interaction potential for the parameter
fitting, as we assumed the interatomic separations and the bulk moduli to be the same for the
non-pairwise and the pairwise potential. This is true for the cubic crystals and approximately
true for the hexagonal crystals. The error that arises from this assumption for the hexagonal
crystals is less than 1% for all hexagonal metals; this is evaluated using the homogeneous
strain matrix [7] and the equation corresponding to equation (6), as we will see later on.

The elastic constants are derived as follows. We assume that the second derivative of
the binding energy per atomU for a certain deformation of the lattice structure is written
as the sum of the second derivatives of the interatomic potential. Then, for cubic crystals,
C ′ = (1/2)(C11 − C12) andC44, which are given by the second derivative of the binding
energy with appropriate deformations, can be evaluated from the interatomic potentials. These
constants are given by the following relations:

Cλ = 1

12�

d2U(γλ)

dγ 2
λ

(λ = 1, 2) (6)

whereCλ (λ = 1, 2) correspond toC ′ andC44, and� is the atomic volume. The deformations
γλ are taken as the strain matrix elements introduced in the literature [8]. The bulk moduliB

are derived from

B = 1

12πd

(
d2U

dr2

)
r=d

(7)
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whered is the equilibrium interatomic spacing.
For hexagonal crystals, elastic constants can be evaluated using the strain matrices

introduced by Cohen, Stixrude and Wasserman [16], for example. We used their matrices
for C66, C44 andCS, but we determinedC33 instead ofR using the following strain matrix:

ε =
( 0 0 0

0 0 0
0 0 γ

)
(8)

which givesC33 as

C33 = 1

�

d2U(γ )

dγ 2
. (9)

The bulk moduliB for hexagonal crystals are derived in the same way as for cubic crystals.
C11, C12 andC13 are calculated from the following relations:

C11 = 1

2
CS +C33−

√
2CS(C33− B) +C66 (10)

C12 = 1

2
CS +C33−

√
2CS(C33− B)− C66 (11)

C13 = C33−
√

1

2
CS(C33− B). (12)

3. Results

We have chosen room temperature phases of the rare-earth metals (Sc, Y, Ce, Pr, Nd, Gd, Tb,
Dy, Ho, Er, Yb, Lu) and the high-temperature cubic phase of La (fcc La) for fitting parameters
for the interatomic potentials because of the best availability of experimental elastic constant
data that we know of.

The final values for the parameters for each metal are compiled in table 1 and the
interatomic potentials calculated using the final parameters set forβ-La are presented in
figure 1. The potential curve shown in figure 1 is derived with the bond orders for the

Table 1. Numbers of valence electrons used in the present calculations and the final values of the
interatomic potential parameters,rc (Å), D andrd (Å), for the rare-earth metals derived by fitting
to the experimental data for the elastic constants. Also shown are the crystal structures for each
phase. The elements given without any phase specifications are room temperature phases.

N Ns Nd rc D rd Structure

Sc 3 2 1 0.9009 0.1989 0.9898 hcp
Y 3 2 1 0.9145 0.0289 0.5132 hcp
β-La 3 2 1 1.1679 0.5826 0.8830 fcc
γ -Ce 3 2.5 0.5 1.1689 0.7861 0.8389 fcc
Pr 3 2 1 1.0210 0.3776 0.6283 dhcp
Nd 3 2 1 1.0225 0.3540 0.7406 dhcp
Gd 3 2 1 0.9666 0.1688 0.7955 hcp
Tb 3 2 1 0.9397 0.1656 0.6906 hcp
Dy 3 2 1 0.9266 0.1209 0.7005 hcp
Ho 3 2 1 0.9016 0.0843 0.5869 hcp
Er 3 2 1 0.9029 0.0536 0.7186 hcp
β-Yb 2 1.9 0.1 1.2036 0.6764 0.7291 fcc
Lu 3 2 1 0.9170 0.1989 0.8397 hcp
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Figure 1. The interatomic potential forβ-La calculated with the final set of parameters.

bonding with the first-nearest-neighbour atoms. Consequently, the same curve shows the angle-
dependent non-pairwise potential describing the first-nearest-neighbour bond axis direction
and the angle-independent pairwise potential for all directions at the same time.

The change of the binding energy versus the tetragonal or trigonal shear strain calculated
with the non-pairwise interaction potential model forβ-La is given in figure 2. The second-
order polynomial fit shown in the figure is obtained by a least-squares fitting to the plotted
binding energy change.
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Figure 2. Change of the binding energy per atom as a function ofγ for tetragonally and trigonally
deformedβ-La. The curves given are second-order polynomial fits.

The elastic constants calculated using these binding energy curves are given in tables 2
and 3 with the experimental data. The calculated and experimental elastic constant data show
good agreement for all the rare-earth metals as a whole, as we show in figure 3, but the
data forC44 do not show good accord like the other constants. Our choice of the model
and the parameters almost always results in too-low calculated values. The non-pairwise and
the pairwise potentials show some difference in agreement between the calculated and the
experimental data for tetragonal shear constantsC ′ for cubic metals orC66 for hexagonal
metals. The difference is also shown inC44. The non-pairwise potentials give lower values
of C44 compared with those with the pairwise potentials. This means that the effect of the
non-pairwise interactions does exist, but it is more complicated than we have assumed. There
may be higher moments to be included in the evaluation of the bond orders of the bondings in
these metals.
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Table 2. Calculated and experimentally determined elastic constantsCij (GPa), the result of the
fitting and the experimental data for the interatomic separationsd (au) and the bulk moduliB (GPa)
for the cubic crystals. The experimental data ford are calculated from the experimental lattice
constant [17]. Calculated also are the elastic constants obtained from the pairwise potentials with
fixed bond order. ‘n’ and ‘p’ stand for the non-pairwise and the pairwise potential respectively.
The parameters used are those compiled in table 1 and the same for the present two models.

C11 C12 C44 B C′ d

β-La n 30.66 19.32 16.37 23.10 5.67 7.0705
p 32.57 18.37 18.22 23.10 7.10 7.0705
Experimenta 28.46 20.41 16.53 23.09 4.03 7.0707

γ -Ce n 26.87 13.67 12.08 18.07 6.60 6.8913
p 27.96 13.13 13.14 18.07 7.42 6.8913
Experimentb 26.01 14.26 17.30 18.18 5.88 6.8891

β-Yb n 18.59 10.26 10.04 13.04 4.17 7.3297
p 18.73 10.19 10.18 13.04 4.27 7.3297
Experimentc 18.62 10.36 17.72 13.11 4.13 7.3270

a Elastic constant data from [18] (660 K).
b Elastic constant data from [19].
c Elastic constant data from [20].

C
6 

6  ( 
c

 
a

 
l

 
c

 
u

 
l

 
a

 
t

 
e

 
d

 
)

 
 

 
/

 
 

 
G

 
P

 
a

C
6
 

6
 
 
(
 

e
 

x
 

p
 

e
 

r
 

i
 

m
 

e
 

n
 

t
 

a
 

l
 

)
 

 
 

/
 

 
 

G
 

P
 

a

1
 

0

1
 

5

2
 

0

2
 

5

3
 

0

3
 

5

4
 

0

1
 

0 1
 

5 2
 

0 2
 

5 3
 

0 3
 

5 4
 

0

C
6
 

6
 
 
(
 

n
 

o
 

n
 

-
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
6
 

6
 
 
(
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

1
 

0

1
 

5

2
 

0

2
 

5

3
 

0

3
 

5

1
 

0 1
 

5 2
 

0 2
 

5 3
 

0 3
 

5

C
4
 

4
 
 
(
 

n
 

o
 

n
 

-
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
4
 

4
 
 
(
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
4 

4  ( 
c

 
a

 
l

 
c

 
u

 
l

 
a

 
t

 
e

 
d

 
)

 
 

 
/

 
 

 
G

 
P

 
a

C
4
 

4
 
 
(
 

e
 

x
 

p
 

e
 

r
 

i
 

m
 

e
 

n
 

t
 

a
 

l
 

)
 

 
 

/
 

 
 

G
 

P
 

a

(a) (b)

1
 
2

 
0

1
 
4

 
0

1
 
6

 
0

1
 
8

 
0

2
 
0

 
0

2
 
2

 
0

2
 
4

 
0

2
 
6

 
0

2
 
8

 
0

1
 
2

 
0 1

 
4

 
0 1

 
6

 
0 1

 
8

 
0 2

 
0

 
0 2

 
2

 
0 2

 
4

 
0 2

 
6

 
0 2

 
8

 
0

C
S
 
 
(
 

n
 

o
 

n
 

-
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
S
 
 
(
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
S
  ( 

c
 

a
 

l
 

c
 

u
 

l
 

a
 

t
 

e
 

d
 

)
 

 
 

/
 

 
 

G
 

P
 

a

C
S
 
 
(
 

e
 

x
 

p
 

e
 

r
 

i
 

m
 

e
 

n
 

t
 

a
 

l
 

)
 

 
 

/
 

 
 

G
 

P
 

a

5
 

0

6
 

0

7
 

0

8
 

0

9
 

0

1
 
0

 
0

1
 
1

 
0

1
 
2

 
0

5
 

0 6
 

0 7
 

0 8
 

0 9
 

0 1
 
0

 
0 1

 
1

 
0 1

 
2

 
0

C
3
 

3
 
 
(
 

n
 

o
 

n
 

-
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
3
 

3
 
 
(
 

p
 

a
 

i
 

r
 

w
 

i
 

s
 

e
 

)

C
3 

3  ( 
c

 
a

 
l

 
c

 
u

 
l

 
a

 
t

 
e

 
d

 
)

 
 

 
/

 
 

 
G

 
P

 
a

C
3
 

3
 
 
(
 

e
 

x
 

p
 

e
 

r
 

i
 

m
 

e
 

n
 

t
 

a
 

l
 

)
 

 
 

/
 

 
 

G
 

P
 

a

(c) (d)

Figure 3. Plots of the experimental versus calculated elastic constants for (a)C66, (b)C44, (c)CS
and (d)C33.



Interatomic potentials for rare-earth metals 6549

Table 3. Calculated and experimentally determined elastic constantsCij (GPa), the result of the
fitting and the experimental data for the interatomic separationsd (au) and the bulk moduliB (GPa)
for the hexagonal crystals. The experimental data ford andc/a are calculated from the experimental
lattice constant [17]. Calculated also are the elastic constants obtained from the pairwise potentials
with fixed bond order. ‘n’ and ‘p’ stand for the non-pairwise and the pairwise potential respectively.
The parameters used are those compiled in table 1 and the same for the present two models.

C11 C12 C13 C33 C44 B C66 d c/a

Sc n 103.0 40.4 31.0 100.9 21.9 56.72 31.3 6.251 1.584
p 109.4 33.8 27.0 116.1 30.1 56.72 37.8 6.251 1.584
Experimenta 98.6 44.8 29.5 106.2 27.5 56.72 26.9 6.251 1.592

Y n 76.60 27.41 21.09 80.59 19.71 41.43 24.59 6.90036 1.61334
p 77.06 27.01 20.83 81.47 20.18 41.43 25.02 6.90036 1.61334
Experimentb 77.90 28.50 21.00 76.90 24.31 41.43 24.70 6.90038 1.57399

Pr n 54.19 21.18 14.58 51.55 11.06 28.80 16.50 6.9400 1.6275
p 55.10 20.59 14.09 52.72 11.46 28.80 17.26 6.9400 1.6275
Experimentc 49.35 22.95 14.3 57.40 13.60 28.80 13.20 6.9400 1.6114

Nd n 59.47 23.63 16.40 56.02 12.17 31.78 17.92 6.9131 1.6264
p 60.88 22.52 15.41 58.83 12.94 31.78 19.18 6.9131 1.6264
Experimentd 54.82 24.62 16.6 60.86 15.03 31.79 15.10 6.9130 1.6124

Gd n 69.73 25.44 19.41 72.62 17.11 37.83 22.15 6.8654 1.6179
p 70.86 24.48 18.78 74.73 18.26 37.83 23.19 6.8654 1.6179
Experimentb 66.67 24.99 21.32 71.91 20.69 37.83 20.84 6.8654 1.5893

Tb n 71.25 26.55 19.97 73.28 17.34 38.72 22.35 6.80496 1.61906
p 72.51 25.47 19.26 75.62 18.63 38.72 23.52 6.80496 1.61906
Experimente 67.88 24.32 22.99 72.25 21.40 38.78 21.78 6.80496 1.58111

Dy n 75.94 25.39 21.01 83.08 28.09 41.07 25.28 6.7896 1.5842
p 69.63 16.64 29.08 110.97 29.49 41.07 26.49 6.7896 1.5842
Experimentb 74.66 26.16 22.33 78.71 24.27 41.07 24.25 6.7896 1.5732

Ho n 71.16 23.48 24.41 82.08 20.15 40.81 23.84 6.7601 1.5808
p 71.93 22.76 24.02 83.89 21.09 40.81 24.58 6.7601 1.5808
Experimentf 76.12 26.00 20.72 80.15 25.92 40.81 25.06 6.7601 1.5698

Er n 82.70 30.22 24.38 85.99 21.73 45.47 26.24 6.7252 1.5810
p 82.35 27.02 25.38 89.31 23.51 45.47 27.66 6.7252 1.5810
Experimentb 86.34 30.50 22.70 85.54 28.09 45.47 27.92 6.7252 1.5700

Lu n 87.00 33.05 24.94 88.87 26.97 47.59 26.97 6.6326 1.5860
p 86.72 27.77 25.24 100.36 30.11 47.59 29.48 6.6326 1.5860
Experimentg 86.23 32.03 28.0 80.86 26.79 47.59 27.10 6.6326 1.5860

a Elastic constant data from [21] (303 K).
b Elastic constant data from [22] (298.0 K).
c Elastic constant data from [23] (300 K).
a Elastic constant data from [24] (300 K).
b Elastic constant data from [25] (300 K).
c Elastic constant data from [26] (300 K).
c Elastic constant data from [27] (300.1 K).

Although the effect of the angle dependence of the d bond is revealed, it is not so evident
as for the transition metals or the light-actinide metals, for example. The relatively weak
dependence on the angle-dependent d bond in the rare-earth metals corresponds to the small
values ofrd in table 1 compared with those of the transition metals [11]. This means that
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the contributions of the d bands in the rare-earth metals are smaller compared with those in
the transition metals. Therefore, the d bonding in the rare-earth metals can be said to play a
non-negligible role in the sense that it adds the angular character to the total bonding, but it is
a relatively small role at the same time.

For practical use as a potential function in molecular dynamics simulations, the pairwise
model may be used instead of the non-pairwise model, as the calculated data show better
accord with experimental data compared with the case of the transition metals, because of the
relatively small contribution of the d bonding. In addition, one may be able to adopt shorter
cut-off radii of the potentials. As we have shown for light-actinide metals [10] and Al [9],
we can easily fit to the equilibrium interatomic separations, and the elastic constants (i.e. the
second derivative of the potential) are insensitive to the number of nearest neighbours included.
Therefore, we can expect that the force acting near the equilibrium atomic positions, at least,
can be calculated exactly enough.

4. Conclusions

We have presented the hybridized NFE–TBB potentials for the rare-earth metals and their
compounds and tested them through comparison between calculated and experimental elastic
constant data.

We can successfully fit to or reproduce the experimental data for the equilibrium inter-
atomic separations, bulk moduli and elastic constants for the cubic and the hexagonal crystals,
and thec/a ratio for the hexagonal crystals.

The bondings in the rare-earth metals are proved to depend on the angle dependence of
the d bond, and they are obscure compared with those in the transition metals at the same time.

The interatomic interaction model used in the present study is based on the angle-dependent
second-moment approximation of the bond order, but higher orders of the moment may be
needed especially for the prediction ofC44 for cubic crystals, which have highly negative
Cauchy pressures (C12− C44), such asγ -Ce orβ-Yb.

The model presented and tested in the present study is easily extended to the rare-earth
compounds, as has been demonstrated for the transition metals [11,28].
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